
Glenair.

Glenair, Inc. 1211 Air Way, Glendale, CA 91201 **Tel:** (818) 247-6000 **Fax:** (818) 247-7240

QUALIFICATION TEST REPORT ABSTRACT FOR SEAKING[™] 700 PEEK GLASS FILLED COMPOSITE SUBSEA CONNECTORS

REPORT NO. GT-23-122 ABSTRACT

PREPARED BY:

Meghan T

DATE: 6/27/2023

UPDATED BY:

DATE:

THIS COPYRIGHT DOCUMENT IS THE PROPERTY OF GLENAIR INC. AND IS FURNISHED ON THE EXPRESS CONDITION THAT IT IS NOT TO BE DISCLOSED, REPRODUCED IN WHOLE OR IN PART, USED TO SOLICIT QUOTATIONS FROM COMPETITIVE SOURCES, OR USED FOR MANUFACTURE BY ANYONE OTHER THAN GLENAIR INC. WITHOUT THE WRITTEN PERMISSION OF GLENAIR INC. THE INFORMATION HEREON HAS BEEN DEVELOPED AT PRIVATE EXPENSE AND MAY BE USED FOR THE PURPOSES OF ENGINEERING EVALUATION AND FOR INCORPORATION INTO TECHNICAL SPECIFICATIONS AND OTHER DOCUMENTS WHICH SPECIFY PROCUREMENT OF PRODUCTS FROM GLENAIR INC.

1.0 Product Description/Application

SeaKing[™] 700 PEEK connectors are non-metallic with 30% glass filled composite thermoplastic shells designed for galvanic compatibility in mixed material applications and immunity from cathodic delamination.

1.1 Purpose

Testing was performed on PEEK cable and connector assemblies to determine its conformance to the performance requirements of EIA 364 and QTP 769-2, Revision E.

1.2 <u>Scope</u>

This report summarizes the environmental, mechanical, and electrical qualification testing of SeaKing[™] 700 PEEK connectors and cable assemblies.

1.3 Conclusion

SeaKing[™] 700 PEEK connectors and cable assemblies has been shown to be capable of meeting performance requirements of QTP 769-2, Revision E.

1.4 Test Specimen

Test Sample Description								
Glenair Series	Quantity							
	7071-0118: LX14 Double Ended Molded Cable Assembly,	9						
SeaKing [™] 700	PEEK and Polyurethane Construction							
PEEK	707-0155-6: PEEK Flange Connector Receptacle (FCR)	9						
	707-0155-1: PEEK Cable Connector Plug (CCP)	9						

GT-23-122 June 26, 2023 3 of 54

2.0 Qualification Test Summary

Qualification Test Summary									
Test Description	Section Reference	Results							
Contact Resistance	2.2	Passed							
Proof Voltage	2.3	Passed							
Pressure Cycling @ 6,000m	2.4	Passed							
High Voltage Breakdown	2.5	Passed							
Mechanical Shock	2.6	Passed							
Vibration	2.7	Passed							
Thermal Shock	2.8	Passed							
Temperature Rise	2.9	Passed*							
Electrical Verification	2.10	Passed							
Thermal Cycling	2.11	Passed							
Dry Mating Over Temperature Range	2.12	Passed							
Drop	2.13	Passed							
Reverse Pressure @ 6,000m	2.14	Passed							
Over-Torque of CCP Locking Collar	2.15	Passed							
Over-Torque of FCR Shell	2.16	Passed							
Mating Durability	2.17	Passed							
Ethernet	2.18	Passed							

*For Test Deviation description, please see section 2.9.4

2.1 Qualification Testing Details

2.2 Contact Resistance

2.2.1 <u>Test Method</u>

AP 17F, Section B.7.3.1.1, four-wire method Connectors shall be tested for Low Level Contact Resistance – measuring contact resistance across each contact point with 50mA

- 2.2.2 <u>Acceptance Criteria</u> Contact resistance shall not exceed 0.3Ω (0.03Ω per contact, including resistance of wire and fixture)
- 2.2.3 <u>Results</u> PASS,
- 2.2.4 <u>Test Anomalies/Deviations</u> N/A

2.3 **Proof Voltage**

2.3.1 Test Method

EIA-364-20F, Method A, Test Condition I 1200kV AC for 60 seconds on 5 contacts or 10% of total contacts

Date: Sheet GT-23-122 June 26, 2023 4 of 54

- 2.3.2 Acceptance Criteria Current leakage shall not exceed 5mA
- 2.3.3 Results PASS
- 2.3.4 Test Anomalies/Deviations N/A

2.4 Pressure Cycling

2.4.1 Test Method

EIA-364-39 / API 17F Section 9.2.2.1 Samples shall be subjected to 520 pressure cycles, from 0m to 6000m deep (0 - 8,702 psi, -0/+500 psi) Pressurization rate: 50 psi/sec Depressurization rate: 100 psi/sec In process cycling hold: 1 minutes Electrical Verification Tests shall be performed on samples after every 52 cycles.

2.4.2 Acceptance Criteria

Samples shall pass Electrical Verification Tests and exhibit no damage detrimental to functionality. The measured resistance shall be less than 0.3Ω (0.03Ω per contact + 0.24Ω for wire between contacts, and wire/connections of testing fixture.)

- 2.4.3 Results PASS
- 2.4.4 Test Anomalies/Deviations N/A

2.5 High Voltage Breakdown

2.5.1 Test Method

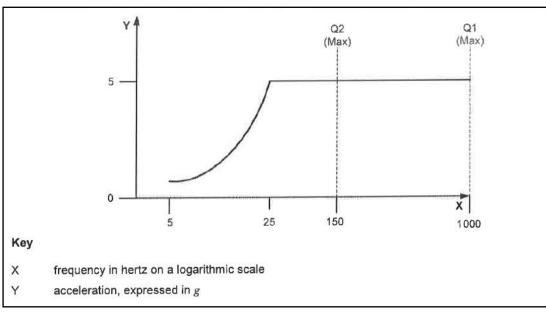
API 17F, Section B.7.3.1.7

The cable assemblies shall be mated to the respective fixtures (wired such that cable contacts are in series.) Seawater shall provide earth to the electrical test equipment. Increase the AC voltage at a maximum rate of 500 VAC/minute until breakdown occurs.

- Acceptance Criteria 2.5.2 The breakdown at greater than or equal to 8kV ac. Voltage shall be recorded, and the point of failure identified by means of photographs.
- 2.5.3 Results PASS
- 2.5.4 Test Anomalies/Deviations N/A

2.6 Mechanical Shock

- 2.6.1 <u>Test Method</u> API 17F, Section 9.2.3.2.1 Half sine shock pulse of 10G, 11ms, 4 shocks in each positive and negative direction of all 3 axes (Total number of shocks will be 24.). Each unit shall be wired in series and monitored for electrical discontinuities greater than 1µs.
 2.6.2 Acceptance Criteria
 - The samples shall exhibit no discontinuity greater than 1µs and exhibit no damage detrimental to functionality
- 2.6.3 <u>Results</u> PASS
- 2.6.4 <u>Test Anomalies/Deviations</u> N/A

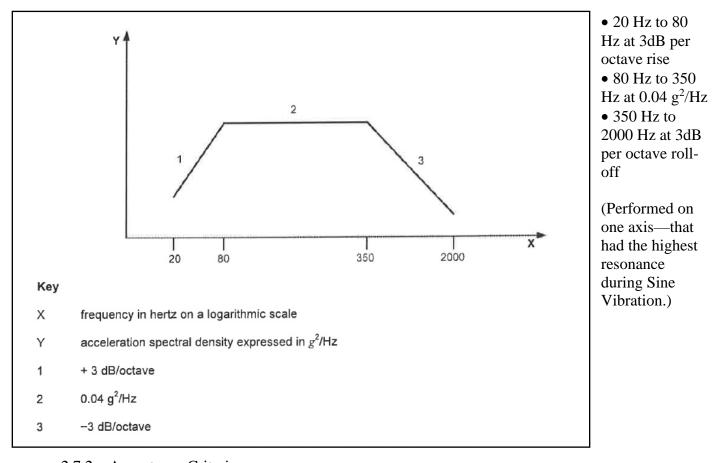

2.7 Vibration

2.7.1 Test Method

API 17 F, Section 9.2.3.2.3 and 9.3.7.3

Sine vibration shall be performed in all three axes—a single sweep from 5 to 150 and back at 5 Hz. Random vibration shall then be conducted, for two (2) hours, on the axis that had the highest resonance during sine vibration.

Profile for initial Sine Vibration tests—all 3 axes:


(Acceleration, g, over Mechanical Vibration Frequency)

- (Q1 &) Q2: 5 Hz to 25 Hz with ±2mm displacement
- Q2: 25 Hz to 150 Hz with 5g acceleration
- Sweep rate: One octave per minute max

GT-23-122 June 26, 2023 6 of 54

Random Profile (Acceleration Spectral Density over Frequency Range):

- 2.7.2 <u>Acceptance Criteria</u> The samples shall exhibit no discontinuity greater than 1µs or damage during vibration testing and pass electrical verification testing.
- 2.7.3 <u>Results</u> PASS
- 2.7.4 <u>Test Anomalies/Deviations</u> N/A

2.8 Thermal Shock

2.8.1 <u>Test Method</u>

EIA-364-32

The intent of this testing is to evaluate the performance of the cables when exposed to extremes of high and low temperatures and to the shock of alternate exposures to these extremes. Samples shall be mounted on a shuttle in the thermal shock chamber and cycled from -20°C to 60°C for 60 minutes at each temperature extreme, for a total of 5 cycles

2.8.2 <u>Acceptance Criteria</u>

The samples must pass electrical verification testing and exhibit no damage detrimental to functionality.

GT-23-122 June 26, 2023 7 of 54

- 2.8.3 <u>Results</u> PASS
- 2.8.4 <u>Test Anomalies/Deviations</u> N/A

2.9 **Temperature Rise**

- 2.9.1 <u>Test Method</u>
 - EIA-364-70, Method 1

Run 23 Amps thru two (2) discrete 12ga contacts, having thermocouples on input and output pins. Record and plot temperature increase over time for each thermocouple.

- 2.9.2 <u>Acceptance Criteria</u> Cable assembly shall experience less than 30°C rise in temperature.
- 2.9.3 <u>Results</u> PASS
- 2.9.4 <u>Test Anomalies/Deviations</u>

The first unit tested in Temperature rise failed due to the amount of current exceeding the wire gauge size. The QTP was then revised to only test the two large gauge size wires in the cable.

2.10 Electrical Verification

2.10.1 Test Method

QTP-769-2 Rev E

Contact Resistance - Connectors shall be tested for Low Level Contact Resistance - Using the four wire method Requirements: 50mA

Insulation Resistance - Connectors shall be tested for Insulation Resistance Requirements: 500V, $>10G\Omega$

Continuity - A multimeter device, such as a Fluke meter, shall be set to its continuity test setting, and hooked to leads across each contact individually Requirements: Point-to-point continuity shall be verified across all contacts.

2.10.2 Acceptance Criteria

Samples shall pass electrical verification tests and exhibit no damage detrimental to functionality.

2.10.3 <u>Results</u> PASS

2.10.4 <u>Test Anomalies/Deviations</u> N/A

2.11 Thermal Cycling

- 2.11.1 Test Method
 - EIA-364-110 (2006) / QTP-769-2 Rev E

Temperature plateaus shall be -20°C and +105°C (\pm 3°C) and transition between plateaus cannot be less than or equal to two minutes. Samples shall be subjected to 520 cycles and electrical verification testing shall be performed every 52 cycles.

- 2.11.2 <u>Acceptance Criteria</u> Samples shall pass electrical verification tests and exhibit no damage detrimental to functionality.
- 2.11.3 <u>Results</u>

PASS

2.11.4 <u>Test Anomalies/Deviations</u> N/A

2.12 Dry Mating Over Temperature Range

2.12.1 Test Method

EIA-364-09D and API 17F, Section B.7.3.3.5

Inside appropriate chamber, mate and de-mate FCR connectors on one side of each cable assembly 20 times at -20°C. Perform electrical verification tests on cable assembly. Repeat at +60°C.

2.12.2 Acceptance Criteria

Samples shall exhibit satisfactory positive location and pass Electrical verification tests (after each set of mating cycles.) No damage shall be observed to either half of the connector pair due to incorrect orientation/alignment.

- 2.12.3 <u>Results</u>
 - PASS
- 2.12.4 <u>Test Anomalies/Deviations</u> N/A

2.13 **Drop**

2.13.1 Test Method

API 17F, Section B.7.5.2.3

Mate an FCR connector onto one end of cable assembly sample. Drop from a height of 2m onto a 5mm thick rubber mat on top of a concrete floor. Perform Electrical Verification Tests. Repeat with FCR connector mated to opposite end of cable assembly.

- 2.13.2 <u>Acceptance Criteria</u> Samples shall pass electrical verification tests and exhibit no damage detrimental to functionality.
 2.13.3 Posults
- 2.13.3 <u>Results</u> PASS
- 2.13.4 <u>Test Anomalies/Deviations</u> N/A

2.14 Reverse Pressure

- 2.14.1 Test Method
 - EIA-364-39 and API 17F, Section 9.2.2.1

Mated (back-potted) test samples shall be placed in a bag, into the pressure vessel, Samples shall be subjected to 8,700psi for a total of 520 cycles. After every 52 cycles, an electrical verification shall be performed.

- 2.14.2 <u>Acceptance Criteria</u> Samples shall pass electrical verification tests and exhibit no damage detrimental to functionality.
- 2.14.3 <u>Results</u> PASS
- 2.14.4 <u>Test Anomalies/Deviations</u> N/A

2.15 Over-Torque of CCP Locking Collar

2.15.1 Test Method

With plug and receptacle mated, securely grip collar with a torque-measurement device. Torque collar to 18 in-lbs. and hold for 20s.

- 2.15.2 <u>Acceptance Criteria</u> Samples shall exhibit no damage detrimental to functionality.
- 2.15.3 <u>Results</u> PASS
- 2.15.4 <u>Test Anomalies/Deviations</u> N/A

2.16 Over-Torque of FCR Shell

2.16.1 Test Method

With plug and receptacle mated, securely grip FCR with a torque-measurement device. Torque FCR shell to 10 in-lbs. and hold for 20s.

- 2.16.2 <u>Acceptance Criteria</u> Samples shall exhibit no damage detrimental to functionality.
- 2.16.3 <u>Results</u> PASS
- 2.16.4 <u>Test Anomalies/Deviations</u> N/A

2.17 Mating Durability

- 2.17.1 Test Method
 - EIA-364-09

The intent of this testing is to determine the effects caused by subjecting electrical connectors to the conditioning action of mating and unmating, simulating the expected life of the connectors. Connectors shall be manually cycled at a rate of no more than 300 cycles per

hour until all 520 cycles are completed. One cycle consists of fully mating and unmating the connector. After every 52 cycles, an electrical verification shall be performed.

2.17.2 Acceptance Criteria

Samples shall pass electrical verification tests and exhibit no damage detrimental to functionality.

- 2.17.3 <u>Results</u> PASS
 - PASS
- 2.17.4 <u>Test Anomalies/Deviations</u> N/A

2.18 Ethernet

2.18.1 Test Method

API 17F, B.9.6 and Table B.29

The SIIS twisted-pair link segment transmission and coupling parameters (TP1 to TP6) shall meet or exceed the 100BASETX twisted-pair link segment specifications. The 100BASE-TX link transmission and coupling parameters of insertion loss, differential characteristic impedance, return loss and near-end crosstalk (NEXT).

	Test Summary									
Test	API 17F Requirement	Corresponding ANSI/ARINC Spec.								
Wire Map	(Continuity Check)									
Insertion Loss	Equation B.2	ANSI TIA-568-C.2, 6.2.7								
Near End Crosstalk (NEXT)	Equation B.4	ANSI TIA-568-C.2, 6.2.8								
Return Loss	Equation B.3	ANSI TIA-568-C.2, 6.2.6								
Propagation Delay	(For Info only)	ARINC 800P4, 3.4.5								
Delay Skew	(For Info only)	ARINC 800P4, 3.4.6								
Attenuation-to-Crosstalk Ratio – Far End (ACR-F)	(For Info only)	ANSI TIA-568-C.2, 6.2.11								
Power Sum Near-End Crosstalk (PS NEXT)	(For Info only)	ANSI TIA-568-C.2, 6.2.9								
Power Sum Attenuation-to- Crosstalk Ratio – Far End (PS ACR-F)	(For Info only)	ANSI TIA-568-C.2, 6.2.13								

2.18.2 Acceptance Criteria

Samples shall exhibit no discontinuity in transmission and pass 100BASE-TX requirements. 2.18.3 Results

- PASS
- 2.18.4 <u>Test Anomalies/Deviations</u> N/A

GT-23-122 June 26, 2023 11 of 54

3.0 Test Results

3.1 Contact Resistance

	Contact Resistance Test Results [mV]											
Pin					Serial No.							
гш	LX-01	LX-02	LX-03	LX-04	LX-05	LX-06	LX-07	LX-08	LX-09			
1	0.438	0.440	0.437	0.437	0.443	0.447	0.432	0.440	0.439			
2	0.434	0.438	0.435	0.443	0.445	0.443	0.432	0.441	0.437			
3	5.915	5.830	5.853	5.866	5.893	5.910	5.911	5.843	5.847			
4	5.917	5.841	5.827	5.857	5.891	5.946	5.914	5.833	5.865			
5	5.922	5.823	5.822	5.871	5.896	5.891	5.882	5.862	5.839			
6	5.935	5.784	5.783	5.833	5.877	5.863	5.854	5.826	5.849			
7	5.943	5.821	5.804	5.866	5.899	5.922	5.923	5.865	5.86			
8	5.925	5.812	5.802	5.827	5.869	5.889	5.875	5.831	5.842			
9	5.919	5.842	5.814	5.867	5.888	5.895	5.853	5.841	5.864			
10	5.926	5.808	5.772	5.843	5.886	5.868	5.854	5.825	5.836			
11	6.505	3.447	3.463	3.486	3.498	3.511	3.472	3.501	3.458			
12	2.361	2.309	2.320	2.349	2.346	2.371	2.323	2.360	2.335			
13	3.577	3.505	3.502	3.509	3.535	3.532	3.504	3.537	3.488			
14	3.540	3.476	3.470	3.476	3.507	3.527	3.496	3.505	3.479			

3.2 **Proof Voltage**

Typical Proof Voltage Test Results

	Proof Voltage Test											
Test Type	Test Level	Active Pin	Ground Pin	Test Value	Pass/ Fail							
ACW	1.2kV	Pin 1	All	0.372mA	Pass							
ACW	1.2kV	Pin 3	All	0.266mA	Pass							
ACW	1.2kV	Pin 5	All	0.249mA	Pass							
ACW	1.2kV	Pin 7	All	0.264mA	Pass							
ACW	1.2kV	Pin 9	All	0.252mA	Pass							

3.3 High Voltage Breakdown

Serial No.	Ramp Rate	Breakdown Voltage	Dwell Time	Pass / Fail							
1-9	500 VAC/min	Units did not breakdown. End voltage, 8.3kV.	30s	Pass							

High Voltage Breakdown Test Results

3.4 Contact Resistance, Initial

Contact Resistance Test Results [mV]

				Ι	nitial								
Pin		Serial No.											
гш	LX-01	LX-02	LX-03	LX-04	LX-05	LX-06	LX-07	LX-08	LX-09				
1	0.438	0.440	0.437	0.437	0.443	0.447	0.432	0.440	0.439				
2	0.434	0.438	0.435	0.443	0.445	0.443	0.432	0.441	0.437				
3	5.915	5.830	5.853	5.866	5.893	5.910	5.911	5.843	5.847				
4	5.917	5.841	5.827	5.857	5.891	5.946	5.914	5.833	5.865				
5	5.922	5.823	5.822	5.871	5.896	5.891	5.882	5.862	5.839				
6	5.935	5.784	5.783	5.833	5.877	5.863	5.854	5.826	5.849				
7	5.943	5.821	5.804	5.866	5.899	5.922	5.923	5.865	5.86				
8	5.925	5.812	5.802	5.827	5.869	5.889	5.875	5.831	5.842				
9	5.919	5.842	5.814	5.867	5.888	5.895	5.853	5.841	5.864				
10	5.926	5.808	5.772	5.843	5.886	5.868	5.854	5.825	5.836				
11	6.505	3.447	3.463	3.486	3.498	3.511	3.472	3.501	3.458				
12	2.361	2.309	2.320	2.349	2.346	2.371	2.323	2.360	2.335				
13	3.577	3.505	3.502	3.509	3.535	3.532	3.504	3.537	3.488				
14	3.540	3.476	3.470	3.476	3.507	3.527	3.496	3.505	3.479				

GT-23-122 June 26, 2023 13 of 54

3.5 Contact Resistance, Post-Mechanical Shock

	Contact Resistance Test Results [mv]												
				Post Mecha	nical Shock	Test							
Din		Serial No.											
Pin	LX-01	LX-02	LX-03	LX-04	LX-05	LX-06	LX-07	LX-08	LX-09				
1	0.451	0.448	0.449	0.440	0.453	0.448	0.452	0.448	0.449				
2	0.447	0.447	0.441	0.453	0.448	0.443	0.448	0.452	0.445				
3	5.916	5.818	5.862	5.845	5.910	5.903	5.918	5.862	5.857				
4	5.908	5.842	5.821	5.877	5.909	5.941	5.895	5.835	5.875				
5	5.914	5.841	5.807	5.868	5.858	5.875	5.883	5.896	5.874				
6	5.911	5.784	5.795	5.803	5.866	5.843	5.849	5.827	5.857				
7	5.891	5.790	5.824	5.859	5.870	5.892	5.926	5.853	5.854				
8	5.894	5.793	5.793	5.833	5.857	5.882	5.892	5.845	5.810				
9	5.891	5.830	5.818	5.859	5.892	5.884	5.857	5.842	5.906				
10	5.913	5.818	5.749	5.847	5.887	5.864	5.845	5.836	5.857				
11	3.514	3.443	3.453	3.466	3.495	3.508	3.467	3.512	3.484				
12	2.345	2.321	2.329	2.353	2.342	2.371	2.335	2.355	2.336				
13	3.550	3.493	3.496	3.502	3.548	3.546	3.504	3.547	3.506				
14	3.567	3.483	3.462	3.463	3.503	3.532	3.504	3.529	3.486				

Contact Resistance Test Results [mV]

GT-23-122 June 26, 2023 14 of 54

3.6 Contact Resistance, Post-Vibration

	Contact Resistance Test Results [mV]												
	Post Vibration Test												
Din		Serial No.											
Pin	LX-01	LX-02	LX-03	LX-04	LX-05	LX-06	LX-07	LX-08	LX-09				
1	0.443	0.446	0.458	0.438	0.454	0.452	0.439	0.456	0.448				
2	0.445	0.435	0.460	0.442	0.448	0.448	0.445	0.447	0.448				
3	5.884	5.813	5.833	5.825	5.886	5.884	5.852	5.814	5.874				
4	5.876	5.815	5.829	5.819	5.883	5.870	5.847	5.807	5.882				
5	5.881	5.832	5.821	5.835	5.860	5.836	5.815	5.839	5.857				
6	5.868	5.809	5.780	5.784	5.883	5.816	5.777	5.805	5.860				
7	5.865	5.827	5.824	5.810	5.892	5.842	5.863	5.812	5.875				
8	5.887	5.791	5.818	5.797	5.860	5.822	5.832	5.808	5.840				
9	5.863	5.849	5.804	5.805	5.878	5.875	5.829	5.827	5.893				
10	5.865	5.835	5.756	5.802	5.848	5.847	5.833	5.805	5.855				
11	3.487	3.453	3.459	3.441	3.487	3.493	3.435	3.496	3.466				
12	2.339	2.310	2.325	2.330	2.337	2.361	2.308	2.335	2.340				
13	3.551	3.493	3.499	3.492	3.521	3.530	3.508	3.533	3.508				
14	3.529	3.479	3.468	3.449	3.508	3.524	3.477	3.509	3.483				

Contact Resistance Test Results [mV]

GT-23-122 June 26, 2023 15 of 54

3.7 Contact Resistance, Post-Thermal Shock

	Contact Resistance Test Results [mV]												
	Post Thermal Shock Test												
Pin		Serial No.											
PIII	LX-01	LX-02	LX-03	LX-04	LX-05	LX-06	LX-07	LX-08	LX-09				
1	0.447	0.434	0.451	0.437	0.441	0.444	0.449	0.448	0.45				
2	0.445	0.443	0.436	0.44	0.44	0.442	0.446	0.452	0.439				
3	6.078	5.976	5.983	6.023	6.076	6.07	6.086	6.049	6.027				
4	6.067	5.965	3.975	6.029	6.061	6.067	6.06	6.038	6.054				
5	6.078	5.995	5.984	6.024	6.027	6.032	6.038	6.029	6.056				
6	6.089	5.975	5.94	5.978	6.037	5.992	6.002	6.021	6.035				
7	6.091	5.986	5.983	6.023	6.07	6.07	6.091	6.045	6.07				
8	6.072	5.968	5.994	5.995	6.029	6.036	6.076	6.048	6.022				
9	6.044	5.995	5.995	6.061	6.052	6.051	6.022	6.054	6.063				
10	6.085	5.977	5.951	6.016	6.046	6.009	6.039	6.017	6.045				
11	3.598	3.548	3.552	3.54	3.581	3.614	3.575	3.601	3.57				
12	2.427	2.366	2.387	2.41	2.381	2.432	2.4	2.413	2.401				
13	3.666	3.617	3.586	3.615	3.623	3.614	3.602	3.645	3.607				
14	3.638	3.578	3.579	3.597	3.597	3.646	3.612	3.632	3.561				

GT-23-122 June 26, 2023 16 of 54

3.8 Contact Resistance, Post-Temperature Rise

	Contact Resistance Test Results [mV]												
	Post Temperature Rise Test												
Din		Serial No.											
Pin	LX-01	LX-02	LX-03	LX-04	LX-05	LX-06	LX-07	LX-08	LX-09				
1	removed	0.446	0.450	0.446	0.504	0.453	0.455	0.441	0.443				
2	-	0.451	0.450	0.443	0.453	0.445	0.448	0.438	0.436				
3	-	6.033	6.094	6.028	6.124	6.075	6.116	6.015	6.047				
4	-	6.025	6.045	6.044	6.108	6.108	6.083	6.046	6.043				
5	-	6.051	6.035	6.062	6.094	6.073	6.045	6.075	6.050				
6	-	6.014	6.014	6.022	6.069	6.036	6.033	6.048	6.039				
7	-	6.038	6.020	6.049	6.097	6.088	6.125	6.073	6.029				
8	-	6.019	6.034	6.047	6.039	6.065	6.082	6.053	6.011				
9	-	6.063	6.021	6.050	6.097	6.085	6.035	6.028	6.048				
10	-	6.033	5.971	6.035	6.054	6.059	6.054	6.035	6.057				
11	-	3.579	3.577	3.583	3.597	3.614	3.586	3.599	3.556				
12	-	2.392	2.399	2.427	2.428	2.442	2.404	2.417	2.403				
13	-	3.635	3.616	3.628	3.654	3.639	3.637	3.633	3.612				
14	-	3.610	3.594	3.606	3.628	3.645	3.607	3.628	3.572				

3.9 Contact Resistance, Thermal Cycling

		1	initial		
Din			Serial No.		
Pin	LX-01	LX-02	LX-03	K14-01	K14-02
1	0.599	0.6	0.652	4.061	3.978
2	0.593	0.6	0.629	9.785	9.531
3	9.479	9.401	10.209	9.726	9.494
4	9.373	9.306	10.179	9.794	5.65
5	9.476	9.684	10.15	9.754	9.524
6	9.398	9.303	10.15	7.096	4.024
7	9.466	9.379	1.182	9.761	9.451
8	9.393	9.343	10.133	9.675	9.464
9	9.487	9.362	10.257	9.754	9.549
10	9.383	9.301	10.2	9.739	9.434
11	4.909	4.89	5.062	5.304	5.167
12	2.551	2.51	2.531	3.159	3.201
13	4.931	4.902	5.208	5.91	5.817
14	4.924	4.876	5.176	5.158	5.012

Contact Resistance Test Results [mV]

LX-01	LX-02	LX-03	K14-01	K14-02
Pass	Pass	Pass	Pass	Pass

Contact Resistance Test Results [mV]

	15/520						
Din	Serial No.						
Pin	LX-01	LX-02	LX-03	K14-01	K14-02		
1	0.606	0.609	0.645	4.135	4.069		
2	6.01	0.625	0.64	9.934	9.71		
3	9.581	9.548	10.354	9.871	9.637		
4	9.496	9.445	10.316	9.93	9.729		
5	9.632	9.568	10.336	9.884	9.363		
6	9.556	9.464	10.2	4.174	4.101		
7	9.622	9.553	10.357	9.908	9.674		
8	9.532	9.455	10.266	9.792	9.535		
9	9.6	9.512	10.422	9.912	9.639		
10	9.522	9.436	10.356	9.876	9.629		
11	4.977	4.976	5.231	5.365	5.315		
12	2.569	2.553	2.531	3.286	3.249		
13	5.012	5.002	5.276	6.036	5.939		
14	4.996	4.938	5.252	5.203	5.077		

LX-01	LX-02	LX-03	K14-01	K14-02
Pass	Pass	Pass	Pass	Pass

	100/520						
Pin	Serial No.						
PIII	LX-01	LX-02	LX-03	K14-01	K14-02		
1	0.6	0.607	0.659	4.138	4.051		
2	0.602	0.611	0.641	9.875	9.651		
3	9.53	9.467	10.336	9.808	9.551		
4	9.43	9.374	10.303	9.908	9.623		
5	9.562	9.473	10.329	9.808	9.563		
6	9.483	9.363	10.273	4.139	4.074		
7	9.564	9.475	10.305	9.856	9.615		
8	9.516	9.369	10.278	9.754	9.511		
9	9.537	9.429	10.35	9.912	9.593		
10	9.449	9.368	10.294	9.827	9.505		
11	4.961	4.912	5.237	5.369	5.239		
12	2.569	2.53	2.567	3.219	3.218		
13	5.033	4.957	5.271	5.979	5.934		
14	4.995	4.957	5.246	5.354	5.139		

LX-01	LX-02	LX-03	K14-01	K14-02
Pass	Pass	Pass	Pass	Pass

	200/520							
Din	Serial No.							
Pin	LX-01	LX-02	LX-03	K14-01	K14-02			
1	0.6	0.602	4.121	4.121	4.036			
2	0.601	0.619	9.861	9.861	9.637			
3	9.519	9.436	9.84	9.84	9.587			
4	9.433	9.328	9.874	9.874	9.636			
5	9.548	9.462	9.802	9.802	9.58			
6	9.476	9.369	4.125	4.125	4.061			
7	9.551	9.447	9.826	9.826	9.562			
8	9.433	9.363	9.725	9.725	9.527			
9	9.504	9.435	9.879	9.879	9.612			
10	9.44	9365	9.807	9.807	9.503			
11	4.94	4.916	5.328	5.328	5.207			
12	2.55	2.535	3.241	3.241	9.618			
13	4.977	4.959	5.986	5.986	5.905			
14	4.955	4.926	5.26	5.26	5.149			

Contact Resistance Test Results [mV]

LX-01	LX-02	LX-03	K14-01	K14-02
Pass	Pass	Pass	Pass	Pass

	300/520							
Din	Serial No.							
Pin	LX-01	LX-02	LX-03	K14-01	K14-02			
1	0.608	0.609	0.65	4.139	4.05			
2	0.61	0.627	0.638	9.947	9.716			
3	9.617	9.549	40.381	9.875	9.652			
4	9.544	9.47	10.322	9.932	9.706			
5	9.656	9.579	10.372	9.88	9.651			
6	9.531	9.46	10.334	4.161	4.098			
7	9.617	9.55	10.355	9.812	9.636			
8	9.539	9.451	10.318	9.776	4.103			
9	9.62	9.502	10.423	9.935	9.681			
10	9.567	9.457	10.415	9.897	9.591			
11	5.004	4.96	5.252	5.453	9.705			
12	2.58	2.551	2.577	3.523	9.609			
13	5.036	5.001	5.286	6.059	5.292			
14	4.988	4.975	5.276	5.284	5.125			

LX-01	LX-02	LX-03	K14-01	K14-02
Pass	Pass	Pass	Pass	Pass

	400/520							
Din	Serial No.							
Pin	LX-01	LX-02	LX-03	K14-01	K14-02			
1	0.621	0.618	0.654	4.119	4.075			
2	0.627	0.626	0.648	9.917	9.709			
3	9.621	9.584	10.366	9.865	9.593			
4	9.515	9.496	10.387	9.902	9.677			
5	9.674	9.575	10.408	9.863	9.652			
6	9.548	9.504	10.365	4.152	4.098			
7	9.651	9.582	10.365	9.861	9.647			
8	9.568	9.464	10.363	9.763	9.546			
9	9.624	9.546	10.453	9.896	9.674			
10	9.511	9.463	10.407	9.859	9.636			
11	5.011	4.98	5.276	5.402	5.294			
12	2.592	2.561	2.591	3.305	3.24			
13	5.035	5.024	5.289	6.035	5.946			
14	5.011	4.977	5.286	5.255	5.128			

Contact Resistance Test Results [mV]

LX-01	LX-02	LX-03	K14-01	K14-02
Pass	Pass	Pass	Pass	Pass

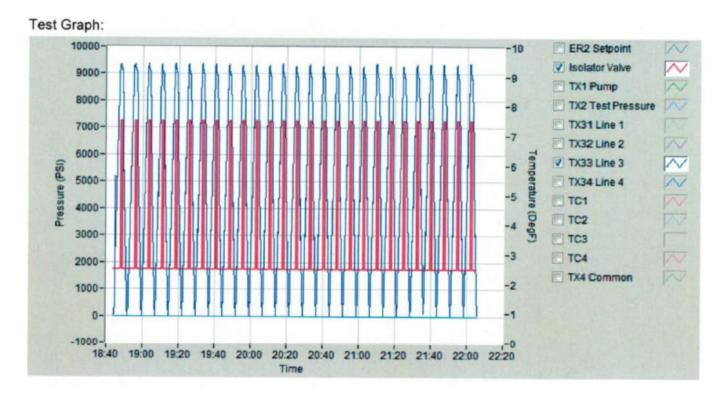
Contact Resistance Test Results [1	mV]	
------------------------------------	-----	--

	500/520						
Pin	Serial No.			Serial No.			
PIII	LX-01	LX-02	LX-03	K14-01	K14-02		
1	0.612	0.612	0.651	4.102	4.018		
2	0.622	0.618	0.646	9.836	9.64		
3	9.543	9.478	10.269	9.781	9.535		
4	0.9453	9.384	10.254	9.86	9.594		
5	9.561	9.462	10.299	9.773	9.561		
6	9.454	9.339	10.267	4.125	4.062		
7	9.569	9.488	10.28	9.761	9.574		
8	9.478	9.383	10.247	9.742	9.468		
9	9.538	9.461	10.369	9.841	9.593		
10	9.428	9.38	10.27	9.794	9.493		
11	4.948	4.929	5.217	5.336	5.245		
12	2.576	2.546	2.567	3.263	5.273		
13	4.997	4.978	5.732	5.949	5.894		
14	4.975	4.94	5.23	5.203	5.174		

LX-01	LX-02	LX-03	K14-01	K14-02
Pass	Pass	Pass	Pass	Pass

Contact Resistance	Test Results	[mV]
--------------------	--------------	------

	Final 520/520					
Pin		Serial No.				
PIII	LX-01	LX-02	LX-03	K14-01	K14-02	
1	0.615	0.608	0.641	4.091	4.003	
2	0.612	0.617	0.64	9.823	9.604	
3	9.539	9.489	10.244	9.767	9.508	
4	9.452	9.396	10.25	9.835	9.563	
5	9.593	9.463	10.298	9.782	9.538	
6	9.468	9.361	10.244	4.108	4.057	
7	9.559	9.47	10.228	9.787	9.51	
8	9.463	9.376	10.236	9.698	9.467	
9	9.511	9.393	10.316	9.857	9.569	
10	9.452	9.354	10.26	9.752	9.482	
11	4.967	4.924	5.208	5.3547	5.237	
12	2.578	2.532	2.563	3.298	3.305	
13	4.986	4.945	5.236	5.937	5.874	
14	4.973	4.946	5.216	5.192	5.057	


LX-01	LX-02	LX-03	K14-01	K14-02
Pass	Pass	Pass	Pass	Pass

GT-23-122 June 26, 2023 25 of 54

4.0 Test Plots

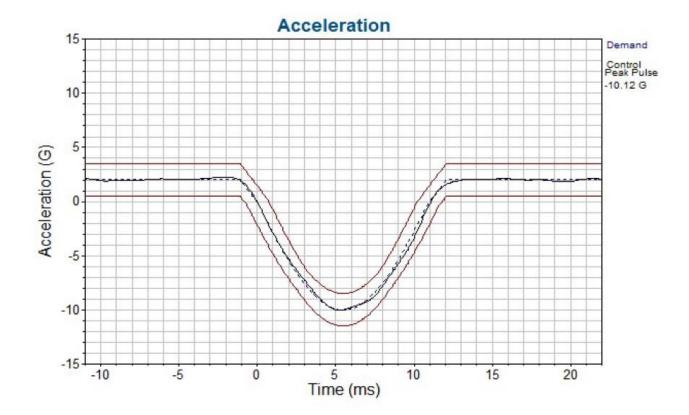
4.1 Pressure Cycling

Description	Typical Pressure Test Plot in Glenair Pressure Test Report	
Test Name	Pressure Cycling @ 6,000 m	
Part Name	Cable Assembly	
Test Group	1	

GT-23-122 June 26, 2023 26 of 54

4.2 Mechanical Shock, Positive

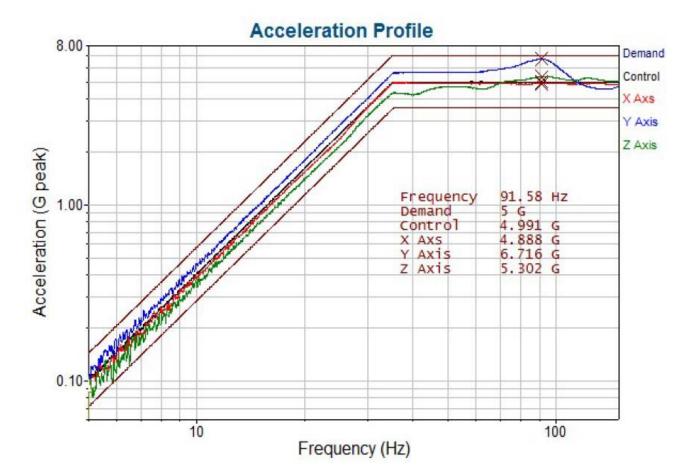
Acceleration 15 Demand Control Peak Pulse 10.22 G 10-5 Acceleration (G) 0 -5 -10 -15 -5 5 15 20 -10 Ó 10 Time (ms)


Description	Typical Positive Shock Pulse Plot
Test Name	Shock Test
Part Name	Cable Assembly
Test Group	2
Part No.	7071-0118
Serial No.	1-9

Glenair Proprietary

GT-23-122 June 26, 2023 27 of 54

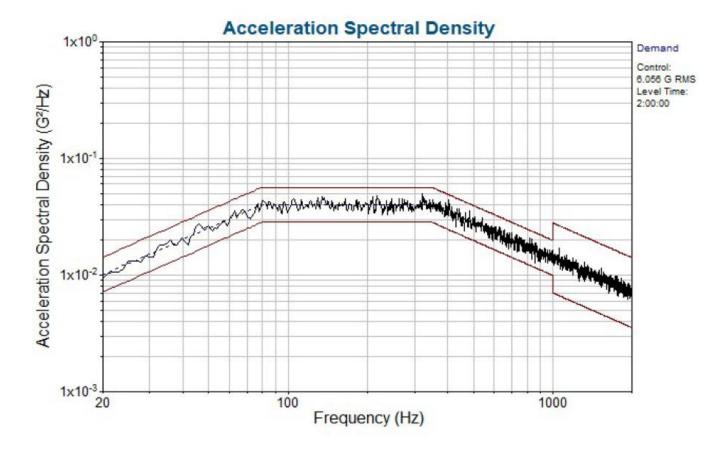
4.3 Mechanical Shock, Negative


Description	Typical Negative Shock Pulse Plot
Test Name	Shock Test
Part Name	Cable Assembly
Test Group	2
Part No.	7071-0118
Serial No.	1-9

Glenair Proprietary

GT-23-122 June 26, 2023 28 of 54

4.4 Sine Vibration



Description	Typical Sine Plot, X, Y and Z axis plotted
Test Name	Vibration
Part Name	Cable Assembly
Test Group	2
Part No.	7071-0118
Serial No.	1-9

GT-23-122 June 26, 2023 29 of 54

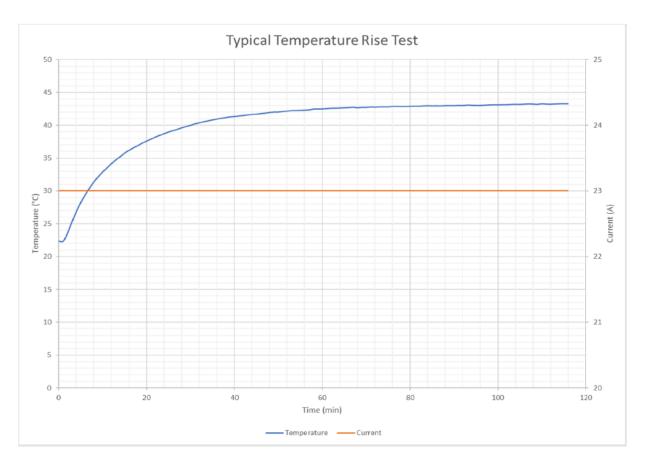
4.5 Random Vibration



Description	Random Vibration Plot
Test Name	Vibration
Part Name	Cable Assembly
Test Group	2
Part No.	7071-0118
Serial No.	1-9

GT-23-122 June 26, 2023 30 of 54

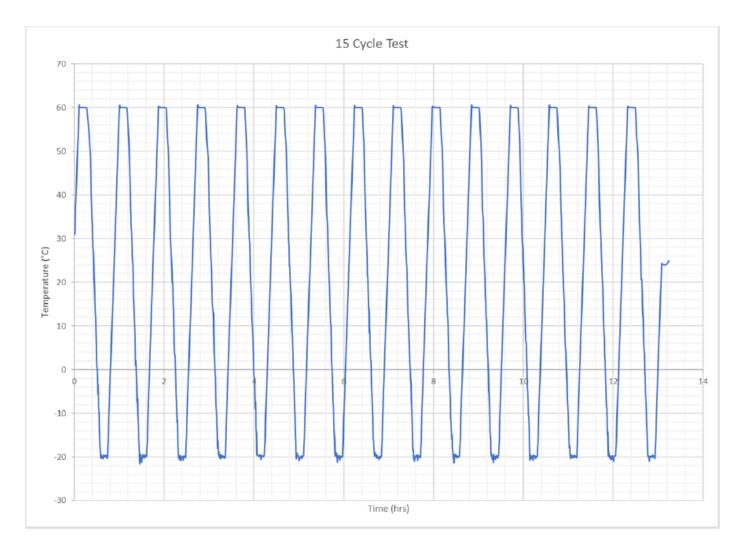
4.6 **Temperature Rise**



Description	Unit 1 Temperature Rise Plot
Test Name	Temperature Rise
Part Name	Cable Assembly
Test Group	2
Part No.	7071-0118
Serial No.	1

GT-23-122 June 26, 2023 31 of 54

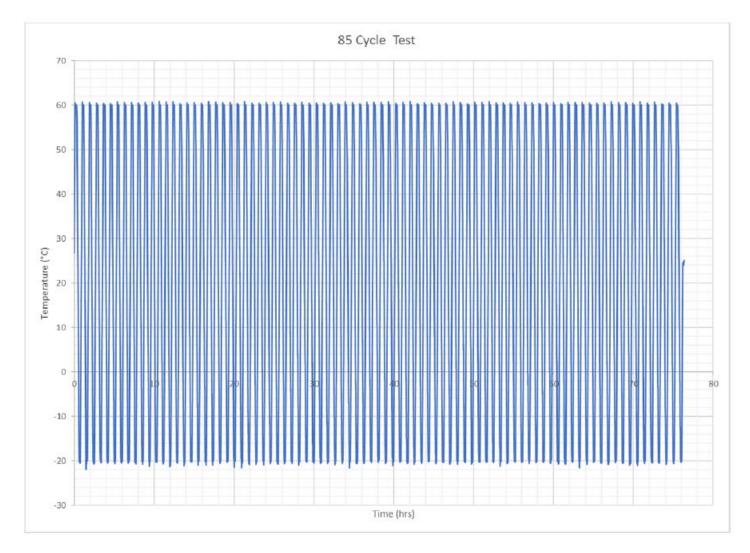
4.7 Temperature Rise



Description	Typical Temperature Rise Plot
Test Name	Temperature Rise
Part Name	Cable Assembly
Test Group	2
Part No.	7071-0118
Serial No.	2-9

GT-23-122 June 26, 2023 32 of 54

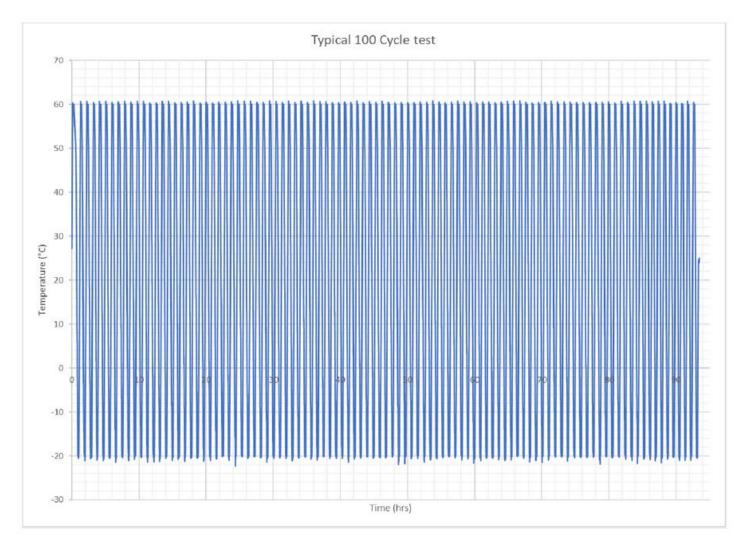
4.8 Temperature Cycling, 15 Cycles



Description	Temperature Cycle Run Plot (15 Cycles Plotted)
Test Name	Temperature Cycling

GT-23-122 June 26, 2023 33 of 54

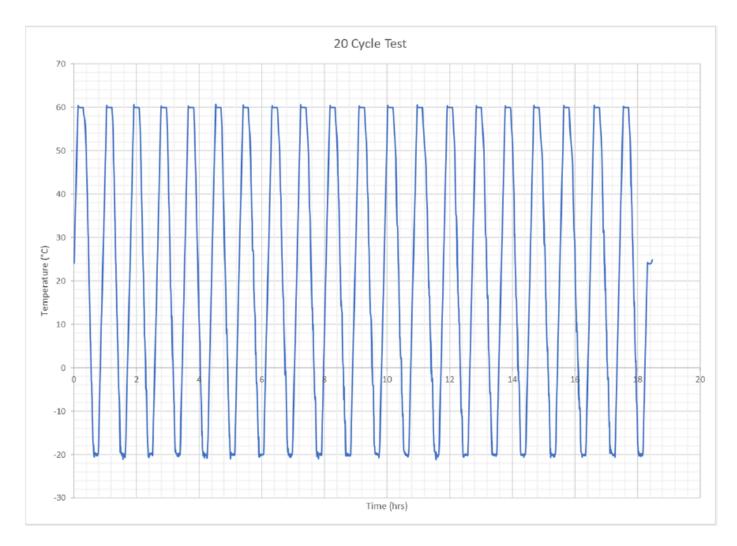
4.9 Temperature Cycling, 85 Cycles



Description	Temperature Cycle Run Plot (85 Cycles Plotted)
Test Name	Temperature Cycling

GT-23-122 June 26, 2023 34 of 54

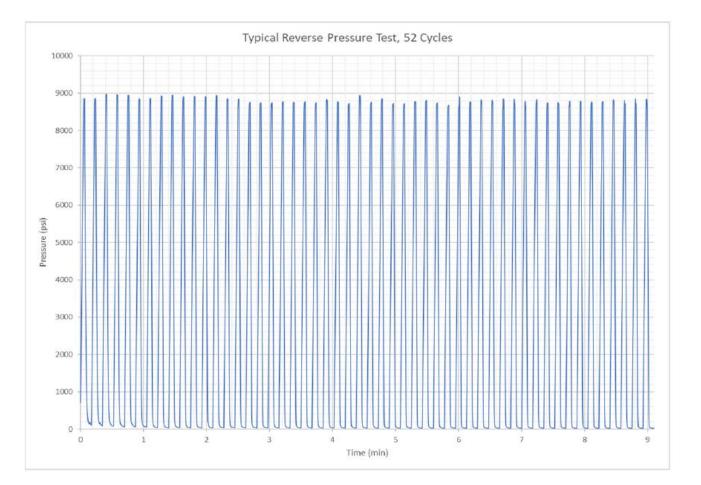
4.10 Temperature Cycling, 100 Cycles



Description	Temperature Cycle Run Plot (100 Cycles Plotted)
Test Name	Temperature Cycling

GT-23-122 June 26, 2023 35 of 54

4.11 Temperature Cycling, 20 Cycles



Description	Temperature Cycle Run Plot (20 Cycles Plotted)
Test Name	Temperature Cycling

GT-23-122 June 26, 2023 36 of 54

4.12 Reverse Pressure

Description	Typical 52 Cycle Pressure Test Plot
Test Name	Reverse Pressure Test
Part Name	Cable Assembly
Test Group	4

Assemblies

GT-23-122 June 26, 2023 37 of 54

4.13 Ethernet

Cable ID: 1 Test Limit: 100BASE-TX Limits Version: V7.4 Date / Time: 03/08/2021 10:17:09 AM Operator: Vertical Labs Headroom 16.1 dB (NEXT 3,6-7,8) Cable Type: Cat 5e U/UTP NVP: 69.0%

Length (ft), Limit 328

Main: Versiv S/N: 2766289 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000 (DSX-CHA004) S/N: 4862525

PASS

8

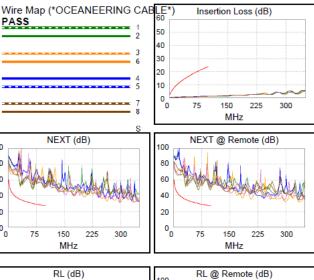
100

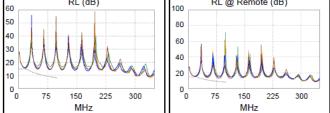
Test Summary: PASS

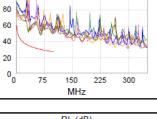
Remote: Versiv S/N: 2766352 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000R (DSX-CHA004) S/N: 2791443

Patch Cable BAD or Patch Cable too short

Prop. Delay (ns)	[Pair 3,6]	17
Delay Skew (ns)	[Pair 1,2]	1
Resistance (ohms), Limit 25.00	[Pair 1,2]	0.70
Impedance (ohms), Limit 85-115	[Pair 1,2]	Too Short
Insertion Loss Margin (dB)	[Pair 3,6]	22.7
Frequency (MHz)	[Pair 3,6]	100.0
Limit (dB)	[Pair 3,6]	24.0


Worst Case Margin Worst Case Value


[Pair 3,6]


11

	WOISt Case			ase value
PASS	MAIN	SR	MAIN	SR
Worst Pair	3,6-7,8	3,6-7,8	3,6-7,8	3,6-7,8
NEXT (dB)	16.2	16.1	18.0	17.3
Freq. (MHz)	32.3	32.5	66.0	65.8
Limit (dB)	35.4	35.3	30.1	30.2
				0.0
N/A	MAIN	SR	MAIN	SR
N/A Worst Pair	MAIN 7,8	SR 7,8	MAIN 7,8	5R 7,8
Worst Pair	7,8	7,8	7,8	7,8

Compliant Network Standards: 10BASE-T 100BASE-TX

Assemblies

Cable ID: 2

Test Limit: 100BASE-TX Limits Version: V7.4 Date / Time: 03/08/2021 10:18:15 AM Operator: Vertical Labs Headroom 14.6 dB (NEXT 3,6-7,8) Cable Type: Cat 5e U/UTP NVP: 69.0%

Main: Versiv S/N: 2766289 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000 (DSX-CHA004) S/N: 4862525

GT-23-122 June 26, 2023 38 of 54

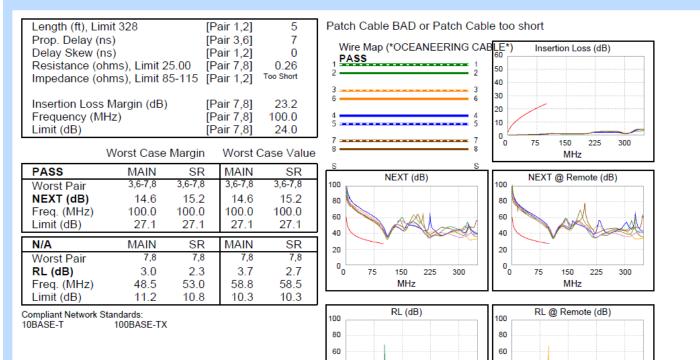
Test Summary: PASS

Remote: Versiv S/N: 2766352 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000R (DSX-CHA004) S/N: 2791443

40

20

0₀


75

150

MHz

225

300

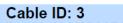
40 20

0 0

75

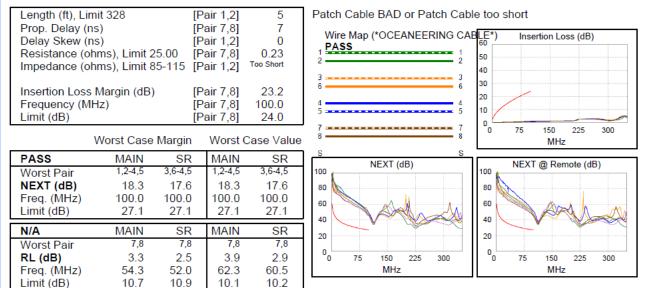
150

MHz

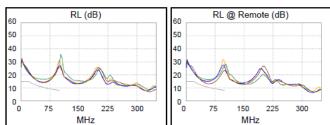

225

Assemblies

No.:GTDate:JunSheet39 c



Test Limit: 100BASE-TX Limits Version: V7.4 Date / Time: 03/08/2021 10:19:25 AM Operator: Vertical Labs Headroom 17.6 dB (NEXT 3,6-4,5) Cable Type: Cat 5e U/UTP NVP: 69.0% Main: Versiv S/N: 2766289 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000 (DSX-CHA004) S/N: 4862525 GT-23-122 June 26, 2023 39 of 54



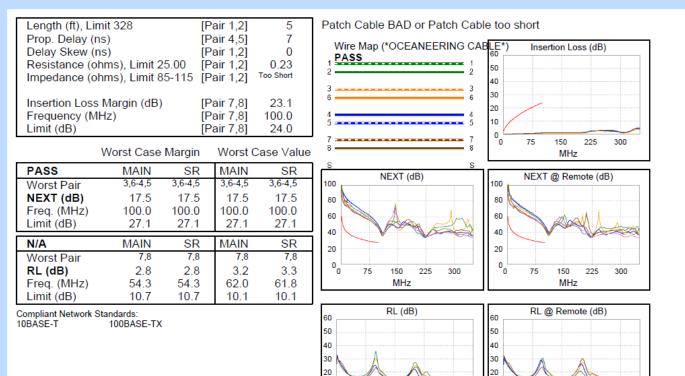
Test Summary: PASS

Remote: Versiv S/N: 2766352 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000R (DSX-CHA004) S/N: 2791443

Compliant Network Standards: 10BASE-T 100BASE-TX

Assemblies

GT-23-122 June 26, 2023 40 of 54


Cable ID: 4

Test Limit: 100BASE-TX Limits Version: V7.4 Date / Time: 03/08/2021 10:20:08 AM Operator: Vertical Labs Headroom 17.5 dB (NEXT 3,6-4,5) Cable Type: Cat 5e U/UTP NVP: 69.0%

Main: Versiv S/N: 2766289 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000 (DSX-CHA004) S/N: 4862525

Test Summary: PASS

Remote: Versiv S/N: 2766352 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000R (DSX-CHA004) S/N: 2791443

10

0 ^L

75

150

MHz

225

300

10 °0

75

150

MHz

225

Assemblies

Cable ID: 5 Test Limit: 100BASE-TX

Limits Version: V7.4 Date / Time: 03/08/2021 10:20:58 AM Operator: Vertical Labs Headroom 17.8 dB (NEXT 3,6-7,8) Cable Type: Cat 5e U/UTP NVP: 69.0%


Main: Versiv S/N: 2766289 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000 (DSX-CHA004) S/N: 4862525

GT-23-122 June 26, 2023 41 of 54

Test Summary: PASS

Remote: Versiv S/N: 2766352 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000R (DSX-CHA004) S/N: 2791443

30

20

10

°0

75

150

MHz

225

300

30

20

10

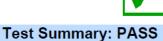
°0

75

150

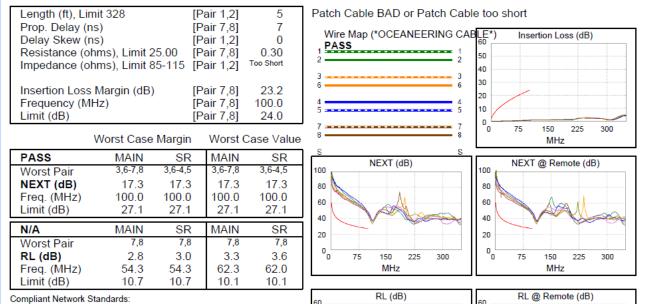
MHz

225

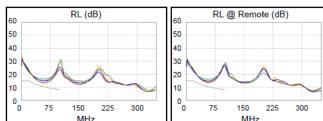

Assemblies

GT-23-122 June 26, 2023 42 of 54

LinkWare[™]PC CABLE TEST MANAGEMENT SOFTWARE



Cable ID: 6 Test Limit: 100BASE-TX


Limits Version: V7.4 Date / Time: 03/08/2021 10:22:16 AM Operator: Vertical Labs Headroom 17.3 dB (NEXT 3,6-7,8) Cable Type: Cat 5e U/UTP NVP: 69.0%

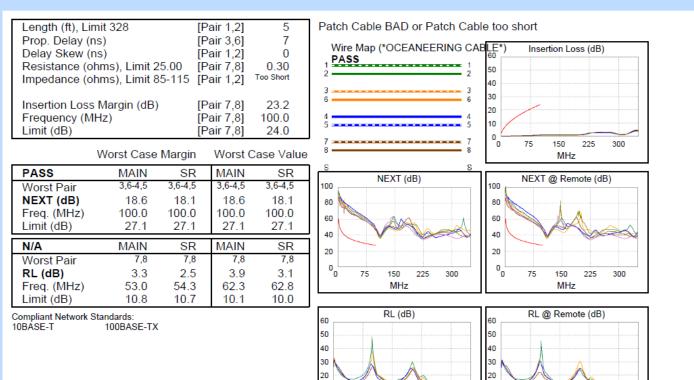
Main: Versiv S/N: 2766289 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000 (DSX-CHA004) S/N: 4862525

Remote: Versiv S/N: 2766352 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000R (DSX-CHA004) S/N: 2791443

10BASE-T 100BASE-TX

Assemblies

No.: GT Date: Jun Sheet 43



Cable ID: 7

Test Limit: 100BASE-TX Limits Version: V7.4 Date / Time: 03/08/2021 10:23:58 AM Operator: Vertical Labs Headroom 18.1 dB (NEXT 3,6-4,5) Cable Type: Cat 5e U/UTP NVP: 69.0% Main: Versiv S/N: 2766289 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000 (DSX-CHA004) S/N: 4862525

Test Summary: PASS

Remote: Versiv S/N: 2766352 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000R (DSX-CHA004) S/N: 2791443

10

0₀

75

150

MHz

225

300

10 0

75

150

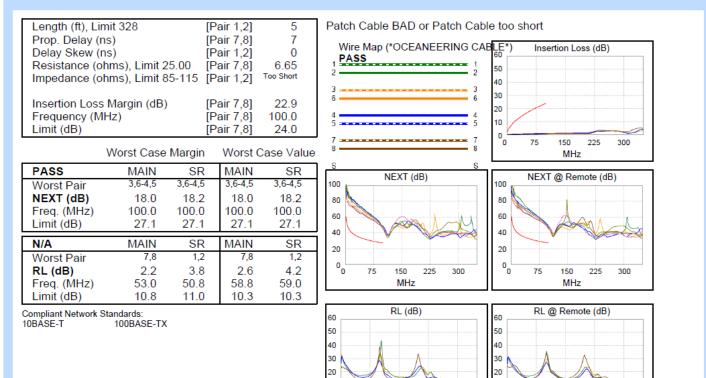
MHz

225

Assemblies

Cable ID: 8 Test Limit: 100BASE-TX

Limits Version: V7.4 Date / Time: 03/08/2021 10:25:48 AM Operator: Vertical Labs Headroom 18.0 dB (NEXT 3.6-4.5) Cable Type: Cat 5e U/UTP NVP: 69.0%


Main: Versiv S/N: 2766289 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000 (DSX-CHA004) S/N: 4862525

GT-23-122 June 26, 2023 44 of 54

Test Summary: PASS

Remote: Versiv S/N: 2766352 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000R (DSX-CHA004) S/N: 2791443

10

°0

75

150

MH₇

225

300

10 00

75

150

MH₇

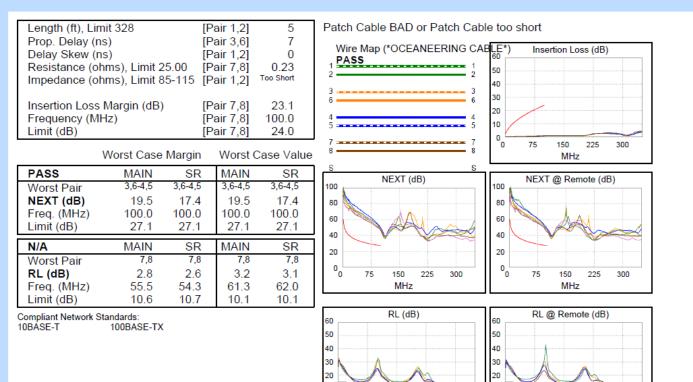
225

Assemblies

GT-23-122

Cable ID: 9

Test Limit: 100BASE-TX Limits Version: V7.4 Date / Time: 03/08/2021 10:26:30 AM Operator: Vertical Labs Headroom 17.4 dB (NEXT 3,6-4,5) Cable Type: Cat 5e U/UTP NVP: 69.0%


Main: Versiv S/N: 2766289 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000 (DSX-CHA004) S/N: 4862525

June 26, 2023 45 of 54

Test Summary: PASS

Remote: Versiv S/N: 2766352 Software Version: V6.4 Build 4 Calibration Date: 10/09/2020 Adapter: DSX-5000R (DSX-CHA004) S/N: 2791443

10

0 0

75

150

MHz

225

300

10 0

75

150

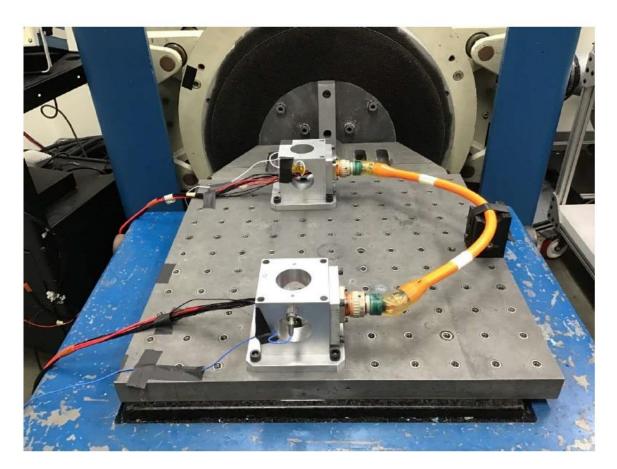
MHz

225

GT-23-122 June 26, 2023 46 of 54

5.0 Test Photos

5.1 High Voltage Breakdown



Description	High Voltage Breakdown Test Setup
Test Name	High Voltage Breakdown
Part Name	Cable Assembly
Test Group	1

GT-23-122 June 26, 2023 47 of 54

5.2 Shock and Vibration, X and Y Axis



Description	Typical Vibration Test Setup, X & YAxis
Test Name	Shock and Vibration
Part Name	Cable Assembly
Test Group	2
Part No.	7071-0118
Serial No.	1-9

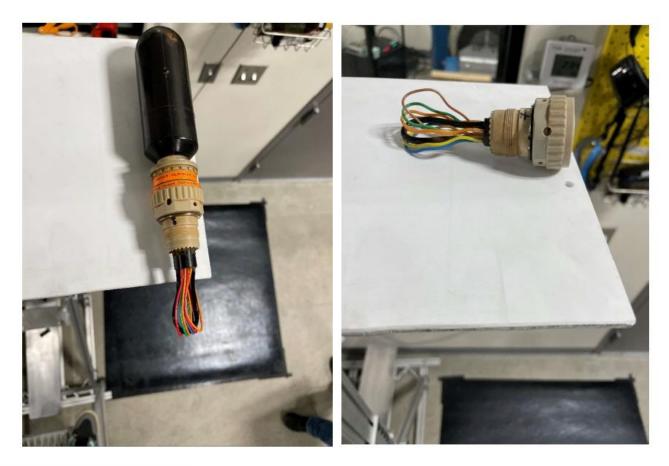
GT-23-122 June 26, 2023 48 of 54

5.3 Shock and Vibration, Z Axis

Description	Typical Vibration Test Setup, Z Axis
Test Name	Shock and Vibration
Part Name	Cable Assembly
Test Group	2
Part No.	7071-0118
Serial No.	1-9

GT-23-122 June 26, 2023 49 of 54

5.4 Thermal Shock



Description	Units in Thermal Shock Chamber
Test Name	Thermal Shock Test
Part Name	Cable Assembly
Test Group	2
Part No.	7071-0118
Serial No.	1-9

GT-23-122 June 26, 2023 50 of 54

5.5 Drop Test

Description	Mated and unmated unit, Drop Test
Test Name	Drop Test
Part Name	Cable Assembly
Test Group	3

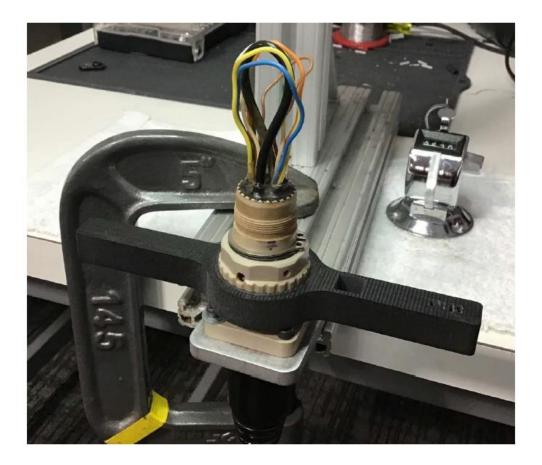
GT-23-122 June 26, 2023 51 of 54

5.6 Reverse Pressure

Description	Unit in Pressure Chamber
Test Name	Reverse Pressure Test
Part Name	Cable Assembly
Test Group	4

GT-23-122 June 26, 2023 52 of 54

5.7 Over-Torque, CCP Locking Collar and FCR Shell



Description	Over Torque of CCP Collar and FCR Shell
Test Name	Over Torque Test
Part Name	Cable Assembly
Test Group	4

GT-23-122 June 26, 2023 53 of 54

5.8 Mating Durability

Description	Mating Durability Setup
Test Name	Mating Durability
Part Name	Cable Assembly
Test Group	4

GT-23-122 June 26, 2023 54 of 54

5.9 Ethernet

Description	Ethernet Test Setup
Test Name	Ethernet Test
Part Name	Cable Assembly
Test Group	5