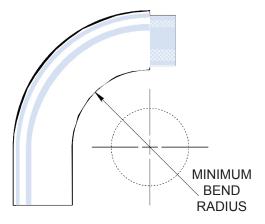


Series 75 Flexible Metal-Core EMI/RFI Conduit **Conduit Material Properties**

Conduit Material Choices, Material Properties, and Military Specifications


Glenair Code	Material	Properties	Applicable Military Specifications
В	Brass, Per A-A-52440 Type I, Grade B	Optimal EMI shielding when combined with bronze overbraid. Generally specified with bronze overbraid and jacket.	■ IAW A-A-52440 (Covering shielded, electrical, flexible, metal conduit for use as protection of wiring in military vehicles from mechanical injury and, when properly installed and grounded, to prevent radiation that may cause interference with radio and other electronic equipment.)
С	Stainless Steel AISI 316	Specified for high-temperature, corrosion, and crush resistance. Nominal shielding value. Typically braided with stainless steel braid for additional pull strength and durability. Available with or without a jacket.	 MIL-C-13909 (Superseded by IAW-A-A-52440 above) MIL-PRF-24758 (Covering the performance requirements for weatherproof flexible conduit systems for use primarily in exposed areas on U.S. Navy ships, to shield against electromagnetic (EM) radiation from own-ship transmitters and emissions external to the ship, electromagnetic pulse
N	Nickel Iron Alloy Type 4 ANSI/ASTM-A-753	80% Nickel, 20% Iron. Optimal low-frequency shielding material. Typically braided with stainless steel braid for additional pull strength and durability. Available with or without a jacket.	 (EMP) events, and to minimize corrosion while being fiel repairable to reduce maintenance.) MIL-DTL-28840 (Covering Connectors, Electrical, Circular, Threaded, High Shock, High Density, Shipboard, Metal Conduit, for EMI Shielding)

Condui	Conduit Resistance and Conduit Pull Force					
Dash No.	Nominal I.D.	Percent Crush	Pound:			
08	.250 (6.4)	2.6	250			
12	.375 (9.5)	2.8	500			

	Dash	Nominal I.D.	Percent Crush	Pull Force	
No.	No.	NOMINAL I.D.	Percent Crush	Pounds	Newtons
	08	.250 (6.4)	2.6	250	1112
	12	.375 (9.5)	2.8	500	2224
	16	.500 (12.7)	4.7	600	2669
	20	.625 (15.9)	4.4	650	2891
	24	.750 (19.1)	5.7	700	3114
	32	1.000 (25.4)	5.0	750	3336
	40	1.250 (31.8)	3.6	1500	6672
	48	1.500 (38.1)	3.0	2000	8896
	56	1.750 (44.5)	3.0	2000	8896
	64	2.000 (50.8)	3.0	2000	8896
	80	2.500 (63.5)	3.0	2000	8896
	96	3.000 (76.2)	3.0	2000	8896

Crush resistance values are expressed as a "percent crush" with a force of 480 pounds (2138 Nm) applied to brass conduit with bronze braid and Neoprene jacket using a 4 inch width compression plate. The "percent crush" for double- and triple-braided conduit configurations are less due to additional braided coverings.

Pull-force values listed indicate the axial load at which the conduit braid separated at a point between the conduit end-fittings. No separation of the terminated end-fittings occurred at these force levels. Double- and triple-braided conduit configurations have a higher pull force due to additional braided coverings. (Note: These values are for factory installed fittings.)

Minimum Bend Radius: Brass conduit, single braid, neoprene jacket						
Dash No.	A Dia	B Dia Max	Minimum Bend Radius			
08	.250 (6.4)	.625 (15.9)	1.750 (44.5)			
12	.375 (9.5)	.750 (19.1)	2.000 (50.8)			
16	.500 (12.7)	.875 (22.2)	2.500 (63.5)			
20	.625 (15.9)	1.000 (25.4)	3.000 (76.2)			
24	.750 (19.1)	1.141 (29.0)	3.750 (95.3)			
32	1.000 (25.4)	1.500 (38.1)	5.000 (127.0)			
40	1.250 (31.8)	1.750 (44.5)	6.250 (158.8)			
48	1.500 (38.1)	2.000 (50.8)	7.750 (196.9)			
56	1.750 (44.5)	2.250 (57.2)	8.500 (215.9)			
64	2.000 (50.8)	2.531 (64.3)	10.000 (254.6)			
80	2.500 (63.5)	3.031 (77.0)	12.500 (317.5)			
96	3.000 (76.2)	3.560 (90.4)	15.000 (381.0)			

© 2012 Glenair, Inc. U.S. CAGE Code 06324 Printed in U.S.A.